Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Substitutional and positional disorder in $\mathrm{Sr}_{2.88} \mathrm{Cu}_{3.12}\left(\mathrm{PO}_{4}\right)_{4}$

Ljiljana Karanović, ${ }^{\text {a* }}$ Sabina Šutović, ${ }^{\text {a }}$ Dejan Poleti, ${ }^{\text {b }}$ Tamara Dordevićc ${ }^{\text {c }}$ and Aleksandar Pačevski ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Faculty of Mining and Geology, University of Belgrade, Dušina 7, 11000 Belgrade, Serbia, ${ }^{\mathbf{b}}$ Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia, and ${ }^{\text {c }}$ Institut für Mineralogie und Kristallographie, Universität Wien-Geozentrum, Althanstrasse 14, A-1090 Vienna, Austria Correspondence e-mail: ljika2002@yahoo.com

Received 2 February 2010
Accepted 24 February 2010
Online 6 March 2010
The title compound, a hydrothermally synthesized strontium copper(II) phosphate(V) (2.88/3.12/4), is isotypic with $\mathrm{Sr}_{3} \mathrm{Cu}_{3^{-}}$ $\left(\mathrm{PO}_{4}\right)_{4}$, obtained previously by solid-state reaction, but not with $\mathrm{Sr}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4}$, obtained previously by the hydrothermal method. A surplus of copper was observed by both structural and chemical analysis, and the formula obtained by the structural analysis is in full agreement with results of the EDX (energy-dispersive X-ray diffraction) analysis. The structure consists of layers of $\mathrm{Cu}_{3} \mathrm{O}_{12}$ groups which are linked via the PO_{4} tetrahedra. The $\mathrm{Cu}_{3} \mathrm{O}_{12}$ groups are formed by one $\mathrm{Cu} 1 \mathrm{O}_{4}$ and two $\mathrm{Cu} 2 \mathrm{O}_{5}$ coordination polyhedra sharing corners. The central Cu 1 atom of the $\mathrm{Cu}_{3} \mathrm{O}_{12}$ group is located at an inversion centre (special position $2 a$). The unique structural feature of the title compound is the presence of $12 \% \mathrm{Cu}$ in the Sr 1 site (special position $2 b$, site symmetry $\overline{1}$). Moreover, disordered Sr 2 atoms were observed: a main site ($\mathrm{Sr} 2 a, 90 \%$) and a less occupied site ($\mathrm{Sr} 2 b, 10 \%$) are displaced by 0.48 (3) A along the b axis. Such substitutional and positional disorder was not observed previously in similar compounds.

Comment

Natural and synthetic metal phosphates often form tetra-hedral-octahedral framework structures with potentially interesting physical and chemical properties (e.g. ionic conductivity, ion exchange and catalytic activity). An ongoing extensive study on the low-temperature hydrothermal synthesis, crystallography and properties of compounds in the insufficiently known $A \mathrm{O}-\mathrm{CuO}-\mathrm{X}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}\left(A=\mathrm{Cd}^{2+}\right.$ or Sr^{2+}; $X=\mathrm{As}^{5+}$ or P^{5+}) system has already yielded a couple of interesting structures (Šutović et al., 2009; Đordević et al., 2008; Stojanović et al., 2008). This contribution reports on the hydrothermal synthesis and crystal structure of the title compound, (I), and its relationship to similar structures. Selected bond lengths and angles for (I) are listed in Table 1.

The title compound, (I), belongs to the group of compounds adopting the general formula $A_{3} B_{3}\left(X_{4}\right)_{4}$, where $A=\mathrm{Ca}^{2+}$, Pb^{2+} or $\mathrm{Sr}^{2+}, B=\mathrm{Cu}^{2+}$ and $X=\mathrm{As}^{5+}$ or P^{5+} (Belik et al., 2002; Effenberger, 1999; Osterloh \& Müller-Buschbaum, 1994). Some examples with mixed B cations, viz. $\mathrm{Ca}_{3} \mathrm{Cu}_{2} \mathrm{Ni}\left(\mathrm{PO}_{4}\right)_{4}$ and $\mathrm{Ca}_{3} \mathrm{CuNi}_{2}\left(\mathrm{PO}_{4}\right)_{4}$, are also known (Pomjakushin et al., 2007). In all these crystal structures, $B_{3} \mathrm{O}_{12}$ groups are linked to $X \mathrm{O}_{4}$ tetrahedra (Fig. 1), forming layers with A cations between them. In (I), these layers are approximately parallel to the (101) planes (Fig. 2a).

The title compound is isotypic with $\mathrm{Sr}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ (Belik et al., 2002) obtained as a polycrystalline material by solid-state reaction, as well as with $\mathrm{Ca}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ (Anderson et al., 1981), $\mathrm{Ca}_{3} \mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{4}$ (Osterloh \& Müller-Buschbaum, 1994) and $\mathrm{Sr}_{3} \mathrm{Cu}_{2} \mathrm{Ni}\left(\mathrm{PO}_{4}\right)_{4}$ (Pomjakushin et al., 2007). All these compounds crystallize in the space group $P 2_{1} / c$ (No. 14) with $Z=2$, but they are described in different settings: $P 2_{1} / c$ for $\mathrm{Sr}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4}, P 2_{1} / a$ for $\mathrm{Ca}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4}, \mathrm{Ca}_{3} \mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{4}$ and $\mathrm{Sr}_{3} \mathrm{Cu}_{2} \mathrm{Ni}\left(\mathrm{PO}_{4}\right)_{4}$, and $P 2_{1} / n$ for (I).

On the other hand, (I) differs from $\mathrm{Sr}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ which was synthesized previously by the hydrothermal method and reported in the space group $C 2 / c$ (No. 15) with $Z=4$ (Effenberger, 1999). Although the unit-cell parameters and volumes of (I), $\mathrm{Sr}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ (Belik et al., 2002) and the transformed unit cell of $\mathrm{Sr}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ (Effenberger, 1999) are almost identical (Table 2), there is a noticeable difference in the stacking sequences of the layers. In the isotypic structures that crystallize in the space group $P 2_{1} / c$, the succeeding layers are identical and the $\mathrm{Cu}_{3} \mathrm{O}_{12}$ groups are arranged in a herringbone-like pattern (Fig. 2a). However, in the non-

Figure 1
Part of the $\mathrm{Sr}_{2.88} \mathrm{Cu}_{3.12}\left(\mathrm{PO}_{4}\right)_{4}$ structure and the atom-labelling scheme. Displacement ellipsoids are plotted at the 50% probability level. The $\mathrm{Sr} 2 b-\mathrm{O}$ bonds in the minor disorder component are represented by dashed lines. [Symmetry codes: (i) $x, y+1, z$; (ii) $x-\frac{1}{2},-y-\frac{1}{2}, z-\frac{1}{2}$; (iii) $-x+\frac{1}{2}, y-\frac{3}{2},-z-\frac{1}{2}$; (iv) $-x,-y,-z$; (v) $-x+\frac{1}{2}, y-\frac{1}{2},-z-\frac{1}{2}$; (vi) $-x,-y-1,-z$; (vii) $x, y-1, z$; (viii) $-x+1,-y+1,-z$; (ix) $-x,-y+1,-z ;(\mathrm{x})-x+1,-y,-z$; (xi) $x-\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.]
isotypic $\mathrm{Sr}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ (Effenberger, 1999), the succeeding layers form an $A B A B A B$ stacking sequence and the $\mathrm{Cu}_{3} \mathrm{O}_{12}$ groups are oriented parallel to each other due to the translation symmetry (Fig. 2b).

During the crystal structure refinement of (I) it was observed that the average M1-O distance of 2.49 (2) \AA is significantly shorter than the distance of $2.58 \AA$ calculated from the ionic radii (Shannon, 1976), suggesting possible incorporation of the Cu atom in the Sr 1 site. As a consequence, the sum of bond valences (Wills, 2009) for the Sr 1 atom showed an oversaturation $\left[\Sigma v_{i j}(\mathrm{Sr} 1)=2.21\right.$ v.u.]. In order to check this result, the chemical composition of the title compound was determined by EDX (energy-dispersive X-ray diffraction) analysis. It confirmed a copper enrichment in the investigated crystal compared to the $\mathrm{Sr}: \mathrm{Cu}=1: 1$ atomic ratio expected for $\mathrm{Sr}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4}$. A new refinement showed that the special $M 1$ position is occupied by 0.88 (3) Sr 1 and 0.12 Cu 11 . At the same time, considering 12% of Cu in the $M 1$ site resulted in an ideal bond valence sum of $2.02 \mathrm{v.u}$. In this way, the formula calculated from the structure refinement and the formula obtained by chemical analysis are in full agreement.

The $M 1$ site is surrounded by six O atoms forming a $4+2$ coordination polyhedron, which can be described as a

Figure 2
The stacking sequence of layers in $(a) \mathrm{Sr}_{2.88} \mathrm{Cu}_{3.12}\left(\mathrm{PO}_{4}\right)_{4}$ and (b) nonisotypyc $\mathrm{Sr}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ (Effenberger, 1999), as viewed along the b axis. The large black and grey spheres represent $M 1$ and $M 2$ atoms, while the small black and grey spheres represent Cu 1 and Cu 2 atoms, respectively. In (a), $\mathrm{Sr} 2 a$ and $\mathrm{Sr} 2 b$ atoms are hatched horizontally and vertically, respectively. ${\mathrm{P} 1 \mathrm{O}_{4} \text { (grey) and } \mathrm{P}_{2} \mathrm{O}_{4} \text { (black) coordination tetrahedra are }}_{\text {(g) }}$ shaded.
deformed slightly elongated octahedron (Fig. 1 and Table 1). The ratio of average short to long bond distances is $2.464 /$ $2.544 \AA$. It is worth noticing that the corresponding ratios for isotypic and non-isotypic $\mathrm{Sr}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ are very similar (2.446/ 2.519 and $2.465 / 2.570$, respectively). This implies that similar substitution of Cu for Sr could also be expected, but it has not been reported.

Additionally, the structure refinements showed that the Sr 2 cations in the general $M 2$ site are split into two positions: a main $\operatorname{Sr} 2 a$ site [site-occupancy factor (SOF) $=0.90$ (1)] and a less occupied $\mathrm{Sr} 2 b$ site [$\mathrm{SOF}=0.10$ (1)]. $\mathrm{Sr} 2 a$ is coordinated by nine O atoms and the coordination polyhedron has the form of a slightly distorted tricapped trigonal prism with $\mathrm{Sr} 2 a-\mathrm{O}$ distances in the range 2.487 (5)-2.989 (6) \AA. The $\mathrm{Sr} 2 b$ cation is displaced by 0.48 (3) \AA along the b axis, so that $\mathrm{O} 4^{\text {vi }}$ and $\mathrm{O} 8^{\text {iii }}$ [symmetry codes: (vi) $-x,-y-1,-z$; (iii) $-x+\frac{1}{2}, y-\frac{3}{2}$, $\left.-z-\frac{1}{2}\right]$ are moved to longer distances of 3.14 (2) and 3.24 (2) Å, respectively, from $\operatorname{Sr} 2 b$. Therefore, $\mathrm{Sr} 2 b$ cations are coordinated by $5+2+2 \mathrm{O}$ atoms which form highly distorted coordination polyhedra with distances ranging from 2.351 (14) to 3.24 (2) \AA. The $\langle\mathrm{Sr} 2 a-\mathrm{O}\rangle$ and $\langle\mathrm{Sr} 2 b-\mathrm{O}\rangle$ distances of 2.70 (6) and 2.75 (11) Å, respectively, are close to the sum of the ionic radii of $2.71 \AA$ for nine-coordinated Sr (Shannon, 1976). The valence requirements of $\mathrm{Sr} 2 a$ are well satisfied by nine oxygens with a bond valence sum of 2.04, but the valence sum for the $\operatorname{Sr} 2 b$ atom [$\Sigma v_{i j}(\operatorname{Sr} 2 b)=2.19$ v.u.] suggests an oversaturation if all nine ligands are considered. Neglecting the longest two distances gives an improved bond valence sum of 2.08 v.u. for $\operatorname{Sr} 2 b$. For coordination number $(\mathrm{CN})=7$, the $\langle\mathrm{Sr} 2 b-\mathrm{O}\rangle$ distance is 2.63 (9) \AA, while that calculated from the ionic radii (Shannon, 1976) is $2.61 \AA$.

Experimental

During efforts to synthesize single crystals in the system $\mathrm{SrO}-\mathrm{CuO}-$ $\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$, the title compound was obtained hydrothermally from a mixture of $\mathrm{Sr}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (Merck, $>97 \%$), $\mathrm{Cu}(\mathrm{OH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Merck, $>99 \%$) and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ (LobaChemie, $>99 \%$) in a 1:3:2 molar ratio. The mixture was transferred into a Teflon vessel and filled to approximately 70% of its volume with distilled water. The initial pH of the mixture was 8 . Finally the vessel was enclosed in a stainless steel autoclave. The autoclave containing the reactant solution was sealed tightly, placed in a furnace and kept at 473 K for 9 d ; it was then spontaneously cooled to room temperature. The resulting product was filtered off, washed thoroughly with distilled water and dried in air at room temperature. The title compound crystallized as transparent blue needles (yield ca 30%) of up to 0.4 mm in length together with crystals of the starting material and a light-blue powder. The X-ray diffraction pattern of the polycrystalline powder revealed that the strong peaks predominantly correspond to the title compound. $\mathrm{Cu}_{2}\left(\mathrm{PO}_{4}\right)(\mathrm{OH})$ (libethenite) and $\mathrm{Cu}_{5}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4}$ (reichenbachite) were present in smaller quantities. Additional weak peaks indicated the existence of crystalline compound(s) that were not identified.

Quantitative chemical analysis, which was performed using a JEOL JSM-6610 LV SEM connected with an Oxford INCA Energy 350 EDX analysis unit, confirmed the presence of Cu and Sr in the average atomic ratio $\mathrm{Cu} / \mathrm{Sr}=1.08$.

Crystal data

$\mathrm{Sr}_{2.88} \mathrm{Cu}_{3.12}\left(\mathrm{PO}_{4}\right)_{4}$
$M_{r}=830.50$
Monoclinic, $P 2_{1} / n$
$a=9.2077$ (18) A
$b=4.9369$ (10) \AA
$c=15.074$ (3) \AA
$\beta=92.15$ (3) ${ }^{\circ}$
Data collection
Nonius KappaCCD diffractometer Absorption correction: multi-scan (Otwinowski \& Minor, 1997) $T_{\text {min }}=0.829, T_{\max }=0.853$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.083$
$S=1.12$
1400 reflections

126 parameters
$V=684.8(2) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=16.46 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.10 \times 0.01 \times 0.01 \mathrm{~mm}$

5148 measured reflections 1400 independent reflections 1178 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.039$
$\Delta \rho_{\text {max }}=1.53 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.93 \mathrm{e}^{-3}$

The $M 1$ site was refined as a mixed $\mathrm{Sr} 1 / \mathrm{Cu} 11$ site constrained to full occupancy. Attempts to refine the positional and displacement parameters for $\mathrm{Cu} 11^{2+}$ and Sr^{2+} at $M 1$ independently failed because the refinement became unstable. Therefore, identical fractional coordinates and displacement parameters for both atoms were applied. Site occupancies of 0.88 (3) and 0.12 (3) were obtained for Sr 1 and Cu 11 , respectively.

The positional disorder with split positions and the same anisotropic displacement parameters for $\mathrm{Sr} 2 a$ and $\mathrm{Sr} 2 b$ were included in the structure model and their sum was fixed at four atoms per unit cell. Site-occupancy refinements of the $\mathrm{Sr} 2 a$ and $\mathrm{Sr} 2 b$ sites gave values of 0.90 (1) and 0.10 (1), respectively.

Data collection: COLLECT (Nonius, 2002); cell refinement: SCALEPACK (Otwinowski et al., 2003); data reduction: DENZOSMN (Otwinowski \& Minor, 1997; Otwinowski et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported financially by the Ministry for Science and Technological Development of the Republic of Serbia (project No. 142030). The fourth author gratefully acknowledges the financial support of the Austrian Science Foundation (FWF) (grant No. T300-N19).

[^0]
References

Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. \& Spagna, R. (1997). SIR97. University of Bari, Italy.
Anderson, J. B., Kostiner, E. \& Ruszala, F. A. (1981). J. Solid State Chem. 39, 29-34.
Belik, A. A., Malakho, A. P., Lazoryak, B. I. \& Khasanov, S. S. (2002). J. Solid State Chem. 163, 121-131.
Đordević, T., Sutović, S., Stojanović, J. \& Karanović, Lj. (2008). Acta Cryst. C64, i82-i86.
Dowty, E. (2000). ATOMS for Windows. Version 5.1. Shape Software, Kingsport, Tennessee, USA.

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Sr} 1-\mathrm{O} 2$	2.457 (5)	$\mathrm{Sr} 2 b-\mathrm{O}^{\text {iii }}$	2.95 (2)
Sr1-O8	2.471 (6)	$\mathrm{Sr} 2 \mathrm{~b}-\mathrm{O} 1^{\text {vi }}$	2.958 (19)
$\mathrm{Sr} 1-\mathrm{O} 5^{\text {i }}$	2.542 (5)	$\mathrm{Sr} 2 \mathrm{~b}-\mathrm{O} 4^{\text {vi }}$	3.14 (2)
$\mathrm{Sr} 2 a-\mathrm{O} 4^{\text {ii }}$	2.487 (5)	$\mathrm{Sr} 2 \mathrm{~b}-\mathrm{O} 8^{\text {iii }}$	3.24 (2)
$\mathrm{Sr} 2 a-\mathrm{O} 6^{\text {iii }}$	2.525 (6)	$\mathrm{Cu} 2-\mathrm{O}^{\mathrm{v}}$	1.920 (5)
$\mathrm{Sr} 2 a-\mathrm{O} 3^{\text {iv }}$	2.555 (6)	$\mathrm{Cu} 2-\mathrm{O} 2^{\text {vii }}$	1.948 (5)
$\mathrm{Sr} 2 a-\mathrm{O} 5^{\text {v }}$	2.618 (6)	$\mathrm{Cu} 2-\mathrm{O}^{\text {vii }}$	2.083 (6)
$\mathrm{Sr} 2 a-\mathrm{O} 1^{\text {vi }}$	2.697 (5)	$\mathrm{Cu} 2-\mathrm{O} 5$	2.120 (5)
$\mathrm{Sr} 2 a-\mathrm{O}^{\text {vii }}$	2.724 (5)	$\mathrm{Cu} 2-\mathrm{O} 1^{\text {iv }}$	2.124 (5)
$\mathrm{Sr} 2 a-\mathrm{O} 4^{\text {vi }}$	2.791 (6)	P1-O4	1.509 (5)
$\mathrm{Sr} 2 a-\mathrm{O} 8^{\text {iii }}$	2.935 (7)	$\mathrm{P} 1-\mathrm{O} 2$	1.532 (5)
$\mathrm{Sr} 2 a-\mathrm{O}^{\text {v }}$	2.989 (6)	P1-O3	1.540 (5)
$\mathrm{Sr} 2 \mathrm{~b}-\mathrm{O} 3^{\text {iv }}$	2.351 (14)	P1-O1	1.566 (5)
$\mathrm{Sr} 2 b-\mathrm{O} 4^{\text {ii }}$	2.429 (12)	P2-O8	1.502 (6)
$\mathrm{Sr} 2 \mathrm{~b}-\mathrm{O} 5^{\text {v }}$	2.477 (13)	$\mathrm{P} 2-\mathrm{O} 7$	1.520 (5)
$\mathrm{Sr} 2 b-\mathrm{O}^{\text {v }}$	2.56 (2)	P2-O6	1.561 (5)
$\mathrm{Sr} 2 b-\mathrm{O}^{\text {vii }}$	2.665 (12)	P2-O5	1.565 (6)
$\mathrm{O} 2{ }^{\text {viii }}-\mathrm{Sr} 1-\mathrm{O} 8$	95.63 (18)	$\mathrm{O} 7^{\text {vii }}-\mathrm{Cu} 2-\mathrm{O} 1^{\text {iv }}$	133.4 (2)
$\mathrm{O} 2-\mathrm{Sr} 1-\mathrm{O} 8$	84.37 (18)	$\mathrm{O} 5-\mathrm{Cu} 2-\mathrm{O} 1^{\text {iv }}$	122.4 (2)
$\mathrm{O} 2{ }^{\text {viii }}-\mathrm{Sr} 1-\mathrm{O} 5^{\text {i }}$	110.86 (16)	$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Cu} 2-\mathrm{O}^{\text {iv }}$	92.24 (18)
$\mathrm{O} 2-\mathrm{Sr} 1-\mathrm{O} 5^{\text {i }}$	69.14 (16)	$\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 2$	112.1 (3)
$\mathrm{O} 8-\mathrm{Sr} 1-\mathrm{O} 5^{\text {i }}$	70.29 (18)	$\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 3$	110.1 (3)
$\mathrm{O} 8{ }^{\text {viii }}-\mathrm{Sr} 1-\mathrm{O} 5^{\text {i }}$	109.71 (18)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3$	110.6 (3)
$\mathrm{O} 3^{\text {ix }}-\mathrm{Cu} 1-\mathrm{O} 1^{\text {iv }}$	87.7 (2)	$\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 1$	108.7 (3)
$\mathrm{O} 3^{\text {vii }}-\mathrm{Cu} 1-\mathrm{O} 1^{\text {iv }}$	92.3 (2)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	108.4 (3)
$\mathrm{O}^{\mathrm{v}}-\mathrm{Cu} 2-\mathrm{O} 2^{\text {vii }}$	171.3 (2)	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 1$	106.8 (3)
$\mathrm{O}^{\mathrm{v}}-\mathrm{Cu} 2-\mathrm{O}^{\text {vii }}$	89.2 (2)	$\mathrm{O} 8-\mathrm{P} 2-\mathrm{O} 7$	115.0 (3)
$\mathrm{O} 2^{\text {vii }}-\mathrm{Cu} 2-\mathrm{O} 7^{\text {vii }}$	94.8 (2)	O8-P2-O6	105.6 (3)
$\mathrm{O}^{\mathrm{v}}-\mathrm{Cu} 2-\mathrm{O} 5$	98.2 (2)	O7-P2-O6	111.9 (3)
$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Cu} 2-\mathrm{O} 5$	88.3 (2)	$\mathrm{O} 8-\mathrm{P} 2-\mathrm{O} 5$	110.3 (3)
$\mathrm{O} 7^{\text {vii }}-\mathrm{Cu} 2-\mathrm{O} 5$	104.2 (2)	O7-P2-O5	107.2 (3)
$\mathrm{O}^{\mathrm{v}}-\mathrm{Cu} 2-\mathrm{O} 1^{\text {iv }}$	83.88 (19)	O6-P2-O5	106.5 (3)
$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Cu} 2-\mathrm{O} 1^{\text {iv }}$	87.8 (2)		

Symmetry codes: (i) $x, y+1, z$; (ii) $x-\frac{1}{2},-y-\frac{1}{2}, z-\frac{1}{2}$; (iii) $-x+\frac{1}{2}, y-\frac{3}{2},-z-\frac{1}{2}$; (iv)
$-x,-y,-z$; (v) $-x+\frac{1}{2}, y-\frac{1}{2},-z-\frac{1}{2}$; (vi) $-x,-y-1,-z$; (vii) $x, y-1, z$; (viii)
$-x+1,-y+1,-z ;($ (ix $)-x,-y+1,-z$.

Table 2
Unit-cell parameters of (I) ($\mathrm{A},{ }^{\circ}$) and related compounds.

Compound	a	b	c	β	$V\left(\AA^{3}\right)$
$\mathrm{Sr}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4} \dagger$	9.2010 (1)	4.94104 (4)	17.8998 (3)	122.8952 (9)	683.3
Transformed cell \ddagger	9.2010	4.94104	15.0380	91.98	683.3
$\mathrm{Sr}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4} \S$	18.035 (4)	4.921 (2)	17.337 (4)	117.20 (1)	1368.5
Transformed cell \dagger	9.219	4.921	15.097	92.54	684.3
$\mathrm{Sr}_{2.88} \mathrm{Cu}_{3.12}\left(\mathrm{PO}_{4}\right)_{4} \dagger \dagger$	9.2077 (18)	4.9369 (10)	15.074 (3)	92.15 (3)	684.8 (2)

\dagger Belik et al. (2002). \ddagger Transformed unit cell 1: $\overline{1} 00 / 0 \overline{1} 0 / \overline{1} 0 \overline{1}$. § Effenberger (1999). © Transformed unit cell $2: \frac{1}{2} 0 \frac{1}{2} / 010 / \frac{1}{2} 0 \frac{1}{2}$. $\dagger \dagger$ This work.

Effenberger, H. (1999). J. Solid State Chem. 142, 6-13.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
Osterloh, D. \& Müller-Buschbaum, Hk. (1994). J. Alloys Compd, 206, 155-158.
Otwinowski, Z., Borek, D., Majewski, W. \& Minor, W. (2003). Acta Cryst. A59, 228-234.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Pomjakushin, V. Yu., Furrer, A., Sheptyakov, D. V., Pomjakushina, E. V. \& Conder, K. (2007). Phys. Rev. B, 76, 174433.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stojanović, J., Đordević, T. \& Karanović, L. (2008). Acta Cryst. C64, i91-i94. Šutović, S., Karanović, L. \& Poleti, D. (2009). Acta Cryst. C65, i48-i51.
Westrip, S. P. (2010). publCIF. In preparation.
Wills, A. S. (2009). Valist. Version 3.0.13. Program available from www.CCP14.ac.uk.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: LG3029). Services for accessing these data are described at the back of the journal.

